extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D4).1C22 = C24.5D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).1C2^2 | 128,122 |
(C22×D4).2C22 = C24.6D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).2C2^2 | 128,125 |
(C22×D4).3C22 = C23⋊SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).3C2^2 | 128,328 |
(C22×D4).4C22 = C4⋊C4.D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).4C2^2 | 128,329 |
(C22×D4).5C22 = (C2×C4)⋊D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).5C2^2 | 128,330 |
(C22×D4).6C22 = (C2×C4)⋊SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).6C2^2 | 128,331 |
(C22×D4).7C22 = C24.9D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).7C2^2 | 128,332 |
(C22×D4).8C22 = 2+ 1+4⋊2C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).8C2^2 | 128,522 |
(C22×D4).9C22 = 2+ 1+4⋊3C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).9C2^2 | 128,524 |
(C22×D4).10C22 = C4○D4.D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).10C2^2 | 128,527 |
(C22×D4).11C22 = C24.C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).11C2^2 | 128,560 |
(C22×D4).12C22 = C24.6(C2×C4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).12C2^2 | 128,561 |
(C22×D4).13C22 = C24.21D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).13C2^2 | 128,588 |
(C22×D4).14C22 = C24.22D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).14C2^2 | 128,599 |
(C22×D4).15C22 = C23.38D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).15C2^2 | 128,606 |
(C22×D4).16C22 = C24.74D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).16C2^2 | 128,607 |
(C22×D4).17C22 = (C2×SD16)⋊15C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).17C2^2 | 128,612 |
(C22×D4).18C22 = C8⋊C22⋊C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).18C2^2 | 128,615 |
(C22×D4).19C22 = C24.23D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).19C2^2 | 128,617 |
(C22×D4).20C22 = C24.24D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).20C2^2 | 128,619 |
(C22×D4).21C22 = C4.4D4⋊13C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).21C2^2 | 128,620 |
(C22×D4).22C22 = C25.C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).22C2^2 | 128,621 |
(C22×D4).23C22 = C24.26D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).23C2^2 | 128,622 |
(C22×D4).24C22 = C23.23D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).24C2^2 | 128,625 |
(C22×D4).25C22 = C24.76D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).25C2^2 | 128,627 |
(C22×D4).26C22 = C24.78D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).26C2^2 | 128,630 |
(C22×D4).27C22 = C24.174C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).27C2^2 | 128,631 |
(C22×D4).28C22 = M4(2)⋊20D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).28C2^2 | 128,632 |
(C22×D4).29C22 = M4(2).47D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).29C2^2 | 128,635 |
(C22×D4).30C22 = C42.5D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).30C2^2 | 128,636 |
(C22×D4).31C22 = M4(2).48D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).31C2^2 | 128,639 |
(C22×D4).32C22 = (C2×C8)⋊4D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).32C2^2 | 128,642 |
(C22×D4).33C22 = C42⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).33C2^2 | 128,643 |
(C22×D4).34C22 = C24.28D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).34C2^2 | 128,645 |
(C22×D4).35C22 = M4(2)⋊21D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).35C2^2 | 128,646 |
(C22×D4).36C22 = D4⋊C4⋊C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).36C2^2 | 128,657 |
(C22×D4).37C22 = C4.67(C4×D4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).37C2^2 | 128,658 |
(C22×D4).38C22 = C4.D4⋊3C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).38C2^2 | 128,663 |
(C22×D4).39C22 = C2.(C8⋊7D4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).39C2^2 | 128,666 |
(C22×D4).40C22 = C2.(C8⋊2D4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).40C2^2 | 128,668 |
(C22×D4).41C22 = C42.432D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).41C2^2 | 128,689 |
(C22×D4).42C22 = C42.433D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).42C2^2 | 128,690 |
(C22×D4).43C22 = C42.110D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).43C2^2 | 128,691 |
(C22×D4).44C22 = C42.112D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).44C2^2 | 128,693 |
(C22×D4).45C22 = C24.175C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).45C2^2 | 128,696 |
(C22×D4).46C22 = M4(2)⋊12D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).46C2^2 | 128,697 |
(C22×D4).47C22 = C42.115D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).47C2^2 | 128,699 |
(C22×D4).48C22 = (C2×C4)⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).48C2^2 | 128,700 |
(C22×D4).49C22 = (C2×C4)⋊6D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).49C2^2 | 128,702 |
(C22×D4).50C22 = (C2×D8)⋊10C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).50C2^2 | 128,704 |
(C22×D4).51C22 = C8⋊(C22⋊C4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).51C2^2 | 128,705 |
(C22×D4).52C22 = M4(2).31D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).52C2^2 | 128,709 |
(C22×D4).53C22 = M4(2).32D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).53C2^2 | 128,710 |
(C22×D4).54C22 = C42.118D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).54C2^2 | 128,714 |
(C22×D4).55C22 = C42.119D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).55C2^2 | 128,715 |
(C22×D4).56C22 = C23⋊2D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).56C2^2 | 128,731 |
(C22×D4).57C22 = C23⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).57C2^2 | 128,732 |
(C22×D4).58C22 = C42⋊9D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).58C2^2 | 128,734 |
(C22×D4).59C22 = C42.129D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).59C2^2 | 128,735 |
(C22×D4).60C22 = C42⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).60C2^2 | 128,736 |
(C22×D4).61C22 = M4(2)⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).61C2^2 | 128,738 |
(C22×D4).62C22 = M4(2)⋊5D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).62C2^2 | 128,740 |
(C22×D4).63C22 = (C2×C4)⋊2D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).63C2^2 | 128,743 |
(C22×D4).64C22 = (C22×D8).C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).64C2^2 | 128,744 |
(C22×D4).65C22 = (C2×C4)⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).65C2^2 | 128,745 |
(C22×D4).66C22 = (C2×C8)⋊20D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).66C2^2 | 128,746 |
(C22×D4).67C22 = (C2×C8).41D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).67C2^2 | 128,747 |
(C22×D4).68C22 = M4(2).4D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).68C2^2 | 128,750 |
(C22×D4).69C22 = M4(2).5D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).69C2^2 | 128,751 |
(C22×D4).70C22 = C24⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).70C2^2 | 128,753 |
(C22×D4).71C22 = C24.31D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).71C2^2 | 128,754 |
(C22×D4).72C22 = (C2×D4)⋊Q8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).72C2^2 | 128,755 |
(C22×D4).73C22 = C4⋊C4.84D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).73C2^2 | 128,757 |
(C22×D4).74C22 = (C2×D4)⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).74C2^2 | 128,759 |
(C22×D4).75C22 = C24⋊Q8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).75C2^2 | 128,764 |
(C22×D4).76C22 = C24.83D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).76C2^2 | 128,765 |
(C22×D4).77C22 = C24.84D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).77C2^2 | 128,766 |
(C22×D4).78C22 = M4(2)⋊6D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).78C2^2 | 128,769 |
(C22×D4).79C22 = C4⋊C4⋊7D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).79C2^2 | 128,773 |
(C22×D4).80C22 = C4⋊C4.94D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).80C2^2 | 128,774 |
(C22×D4).81C22 = C24.33D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).81C2^2 | 128,776 |
(C22×D4).82C22 = C4⋊C4.96D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).82C2^2 | 128,777 |
(C22×D4).83C22 = C4⋊C4.97D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).83C2^2 | 128,778 |
(C22×D4).84C22 = M4(2).8D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).84C2^2 | 128,780 |
(C22×D4).85C22 = M4(2).10D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).85C2^2 | 128,783 |
(C22×D4).86C22 = (C2×C4)⋊3D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).86C2^2 | 128,786 |
(C22×D4).87C22 = (C2×C4)⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).87C2^2 | 128,787 |
(C22×D4).88C22 = M4(2).12D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).88C2^2 | 128,795 |
(C22×D4).89C22 = C4⋊C4.106D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).89C2^2 | 128,797 |
(C22×D4).90C22 = (C2×C4).23D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).90C2^2 | 128,799 |
(C22×D4).91C22 = C24.Q8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).91C2^2 | 128,801 |
(C22×D4).92C22 = (C2×C4).24D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).92C2^2 | 128,803 |
(C22×D4).93C22 = C42⋊8C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).93C2^2 | 128,805 |
(C22×D4).94C22 = (C2×C8).D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).94C2^2 | 128,813 |
(C22×D4).95C22 = (C2×C8).168D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).95C2^2 | 128,824 |
(C22×D4).96C22 = (C2×C4).27D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).96C2^2 | 128,825 |
(C22×D4).97C22 = (C2×C8).169D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).97C2^2 | 128,826 |
(C22×D4).98C22 = C2×C2≀C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).98C2^2 | 128,850 |
(C22×D4).99C22 = C2×C23.D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).99C2^2 | 128,851 |
(C22×D4).100C22 = C24.36D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).100C2^2 | 128,853 |
(C22×D4).101C22 = C2×C42⋊C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).101C2^2 | 128,856 |
(C22×D4).102C22 = C2×C42⋊3C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).102C2^2 | 128,857 |
(C22×D4).103C22 = C24.39D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).103C2^2 | 128,859 |
(C22×D4).104C22 = C23.203C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).104C2^2 | 128,1053 |
(C22×D4).105C22 = C42⋊13D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).105C2^2 | 128,1056 |
(C22×D4).106C22 = C42⋊14D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).106C2^2 | 128,1060 |
(C22×D4).107C22 = C23.215C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).107C2^2 | 128,1065 |
(C22×D4).108C22 = C24.204C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).108C2^2 | 128,1067 |
(C22×D4).109C22 = C24.205C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).109C2^2 | 128,1069 |
(C22×D4).110C22 = C24.221C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).110C2^2 | 128,1104 |
(C22×D4).111C22 = C24.223C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).111C2^2 | 128,1106 |
(C22×D4).112C22 = C23.257C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).112C2^2 | 128,1107 |
(C22×D4).113C22 = C24.225C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).113C2^2 | 128,1108 |
(C22×D4).114C22 = C23.259C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).114C2^2 | 128,1109 |
(C22×D4).115C22 = C23.261C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).115C2^2 | 128,1111 |
(C22×D4).116C22 = C23.262C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).116C2^2 | 128,1112 |
(C22×D4).117C22 = C23.311C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).117C2^2 | 128,1143 |
(C22×D4).118C22 = C24.95D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).118C2^2 | 128,1144 |
(C22×D4).119C22 = C23.313C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).119C2^2 | 128,1145 |
(C22×D4).120C22 = C23.316C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).120C2^2 | 128,1148 |
(C22×D4).121C22 = C23.318C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).121C2^2 | 128,1150 |
(C22×D4).122C22 = C24.254C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).122C2^2 | 128,1152 |
(C22×D4).123C22 = C23.322C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).123C2^2 | 128,1154 |
(C22×D4).124C22 = C24.259C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).124C2^2 | 128,1158 |
(C22×D4).125C22 = C23.327C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).125C2^2 | 128,1159 |
(C22×D4).126C22 = C23.328C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).126C2^2 | 128,1160 |
(C22×D4).127C22 = C24.262C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).127C2^2 | 128,1162 |
(C22×D4).128C22 = C24.263C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).128C2^2 | 128,1163 |
(C22×D4).129C22 = C24.565C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).129C2^2 | 128,1168 |
(C22×D4).130C22 = C24.269C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).130C2^2 | 128,1175 |
(C22×D4).131C22 = C23.344C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).131C2^2 | 128,1176 |
(C22×D4).132C22 = C23.345C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).132C2^2 | 128,1177 |
(C22×D4).133C22 = C23.348C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).133C2^2 | 128,1180 |
(C22×D4).134C22 = C24.279C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).134C2^2 | 128,1190 |
(C22×D4).135C22 = C24.282C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).135C2^2 | 128,1193 |
(C22×D4).136C22 = C23.364C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).136C2^2 | 128,1196 |
(C22×D4).137C22 = C24.289C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).137C2^2 | 128,1202 |
(C22×D4).138C22 = C24.290C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).138C2^2 | 128,1203 |
(C22×D4).139C22 = C23.372C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).139C2^2 | 128,1204 |
(C22×D4).140C22 = C23.374C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).140C2^2 | 128,1206 |
(C22×D4).141C22 = C24.293C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).141C2^2 | 128,1208 |
(C22×D4).142C22 = C23.377C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).142C2^2 | 128,1209 |
(C22×D4).143C22 = C23.379C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).143C2^2 | 128,1211 |
(C22×D4).144C22 = C24.573C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).144C2^2 | 128,1213 |
(C22×D4).145C22 = C23.388C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).145C2^2 | 128,1220 |
(C22×D4).146C22 = C23.390C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).146C2^2 | 128,1222 |
(C22×D4).147C22 = C23.391C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).147C2^2 | 128,1223 |
(C22×D4).148C22 = C23.398C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).148C2^2 | 128,1230 |
(C22×D4).149C22 = C23.400C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).149C2^2 | 128,1232 |
(C22×D4).150C22 = C23.401C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).150C2^2 | 128,1233 |
(C22×D4).151C22 = C23.404C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).151C2^2 | 128,1236 |
(C22×D4).152C22 = C23.410C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).152C2^2 | 128,1242 |
(C22×D4).153C22 = C23.412C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).153C2^2 | 128,1244 |
(C22×D4).154C22 = C23.413C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).154C2^2 | 128,1245 |
(C22×D4).155C22 = C23.416C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).155C2^2 | 128,1248 |
(C22×D4).156C22 = C23.418C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).156C2^2 | 128,1250 |
(C22×D4).157C22 = C24.311C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).157C2^2 | 128,1253 |
(C22×D4).158C22 = C23.426C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).158C2^2 | 128,1258 |
(C22×D4).159C22 = C23.431C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).159C2^2 | 128,1263 |
(C22×D4).160C22 = C23.434C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).160C2^2 | 128,1266 |
(C22×D4).161C22 = C42⋊18D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).161C2^2 | 128,1269 |
(C22×D4).162C22 = C42⋊19D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).162C2^2 | 128,1272 |
(C22×D4).163C22 = C42⋊20D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).163C2^2 | 128,1273 |
(C22×D4).164C22 = C23.443C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).164C2^2 | 128,1275 |
(C22×D4).165C22 = C42⋊21D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).165C2^2 | 128,1276 |
(C22×D4).166C22 = C42.168D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).166C2^2 | 128,1277 |
(C22×D4).167C22 = C42.171D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).167C2^2 | 128,1280 |
(C22×D4).168C22 = C24.326C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).168C2^2 | 128,1285 |
(C22×D4).169C22 = C24.327C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).169C2^2 | 128,1286 |
(C22×D4).170C22 = C23.455C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).170C2^2 | 128,1287 |
(C22×D4).171C22 = C23.457C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).171C2^2 | 128,1289 |
(C22×D4).172C22 = C23.458C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).172C2^2 | 128,1290 |
(C22×D4).173C22 = C24.331C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).173C2^2 | 128,1291 |
(C22×D4).174C22 = C24.332C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).174C2^2 | 128,1292 |
(C22×D4).175C22 = C23.472C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).175C2^2 | 128,1304 |
(C22×D4).176C22 = C24.340C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).176C2^2 | 128,1308 |
(C22×D4).177C22 = C23.478C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).177C2^2 | 128,1310 |
(C22×D4).178C22 = C23.491C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).178C2^2 | 128,1323 |
(C22×D4).179C22 = C42.182D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).179C2^2 | 128,1324 |
(C22×D4).180C22 = C23.493C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).180C2^2 | 128,1325 |
(C22×D4).181C22 = C24.347C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).181C2^2 | 128,1327 |
(C22×D4).182C22 = C24.348C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).182C2^2 | 128,1329 |
(C22×D4).183C22 = C42⋊22D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).183C2^2 | 128,1330 |
(C22×D4).184C22 = C42⋊23D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).184C2^2 | 128,1333 |
(C22×D4).185C22 = C42⋊24D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).185C2^2 | 128,1335 |
(C22×D4).186C22 = C42⋊25D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).186C2^2 | 128,1341 |
(C22×D4).187C22 = C42⋊26D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).187C2^2 | 128,1342 |
(C22×D4).188C22 = C23.514C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).188C2^2 | 128,1346 |
(C22×D4).189C22 = C24.360C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).189C2^2 | 128,1347 |
(C22×D4).190C22 = C24.587C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).190C2^2 | 128,1350 |
(C22×D4).191C22 = C42⋊27D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).191C2^2 | 128,1351 |
(C22×D4).192C22 = C42⋊28D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).192C2^2 | 128,1352 |
(C22×D4).193C22 = C24.97D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).193C2^2 | 128,1354 |
(C22×D4).194C22 = C24.589C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).194C2^2 | 128,1355 |
(C22×D4).195C22 = C23.524C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).195C2^2 | 128,1356 |
(C22×D4).196C22 = C42.189D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).196C2^2 | 128,1364 |
(C22×D4).197C22 = C24.592C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).197C2^2 | 128,1371 |
(C22×D4).198C22 = C42.193D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).198C2^2 | 128,1372 |
(C22×D4).199C22 = C42.194D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).199C2^2 | 128,1373 |
(C22×D4).200C22 = C23.543C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).200C2^2 | 128,1375 |
(C22×D4).201C22 = C23.544C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).201C2^2 | 128,1376 |
(C22×D4).202C22 = C23.548C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).202C2^2 | 128,1380 |
(C22×D4).203C22 = C24.375C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).203C2^2 | 128,1381 |
(C22×D4).204C22 = C23.551C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).204C2^2 | 128,1383 |
(C22×D4).205C22 = C23.553C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).205C2^2 | 128,1385 |
(C22×D4).206C22 = C23.556C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).206C2^2 | 128,1388 |
(C22×D4).207C22 = C42⋊31D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).207C2^2 | 128,1389 |
(C22×D4).208C22 = C42.196D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).208C2^2 | 128,1390 |
(C22×D4).209C22 = C24.377C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).209C2^2 | 128,1393 |
(C22×D4).210C22 = C42⋊32D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).210C2^2 | 128,1394 |
(C22×D4).211C22 = C24.378C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).211C2^2 | 128,1395 |
(C22×D4).212C22 = C23.571C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).212C2^2 | 128,1403 |
(C22×D4).213C22 = C23.572C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).213C2^2 | 128,1404 |
(C22×D4).214C22 = C23.573C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).214C2^2 | 128,1405 |
(C22×D4).215C22 = C23.574C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).215C2^2 | 128,1406 |
(C22×D4).216C22 = C24.384C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).216C2^2 | 128,1407 |
(C22×D4).217C22 = C23.576C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).217C2^2 | 128,1408 |
(C22×D4).218C22 = C25⋊C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).218C2^2 | 128,1411 |
(C22×D4).219C22 = C23.580C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).219C2^2 | 128,1412 |
(C22×D4).220C22 = C23.581C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).220C2^2 | 128,1413 |
(C22×D4).221C22 = C24.389C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).221C2^2 | 128,1414 |
(C22×D4).222C22 = C23.583C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).222C2^2 | 128,1415 |
(C22×D4).223C22 = C23.584C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).223C2^2 | 128,1416 |
(C22×D4).224C22 = C23.585C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).224C2^2 | 128,1417 |
(C22×D4).225C22 = C24.393C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).225C2^2 | 128,1418 |
(C22×D4).226C22 = C24.394C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).226C2^2 | 128,1419 |
(C22×D4).227C22 = C24.395C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).227C2^2 | 128,1420 |
(C22×D4).228C22 = C23.591C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).228C2^2 | 128,1423 |
(C22×D4).229C22 = C23.592C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).229C2^2 | 128,1424 |
(C22×D4).230C22 = C23.593C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).230C2^2 | 128,1425 |
(C22×D4).231C22 = C24.401C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).231C2^2 | 128,1426 |
(C22×D4).232C22 = C23.595C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).232C2^2 | 128,1427 |
(C22×D4).233C22 = C24.403C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).233C2^2 | 128,1428 |
(C22×D4).234C22 = C23.597C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).234C2^2 | 128,1429 |
(C22×D4).235C22 = C24.406C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).235C2^2 | 128,1431 |
(C22×D4).236C22 = C23.600C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).236C2^2 | 128,1432 |
(C22×D4).237C22 = C24.407C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).237C2^2 | 128,1433 |
(C22×D4).238C22 = C23.602C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).238C2^2 | 128,1434 |
(C22×D4).239C22 = C23.603C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).239C2^2 | 128,1435 |
(C22×D4).240C22 = C23.605C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).240C2^2 | 128,1437 |
(C22×D4).241C22 = C23.606C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).241C2^2 | 128,1438 |
(C22×D4).242C22 = C23.607C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).242C2^2 | 128,1439 |
(C22×D4).243C22 = C23.608C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).243C2^2 | 128,1440 |
(C22×D4).244C22 = C24.411C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).244C2^2 | 128,1441 |
(C22×D4).245C22 = C24.412C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).245C2^2 | 128,1442 |
(C22×D4).246C22 = C23.611C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).246C2^2 | 128,1443 |
(C22×D4).247C22 = C23.612C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).247C2^2 | 128,1444 |
(C22×D4).248C22 = C24.413C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).248C2^2 | 128,1446 |
(C22×D4).249C22 = C23.615C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).249C2^2 | 128,1447 |
(C22×D4).250C22 = C23.617C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).250C2^2 | 128,1449 |
(C22×D4).251C22 = C23.618C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).251C2^2 | 128,1450 |
(C22×D4).252C22 = C24.418C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).252C2^2 | 128,1455 |
(C22×D4).253C22 = C23.624C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).253C2^2 | 128,1456 |
(C22×D4).254C22 = C23.627C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).254C2^2 | 128,1459 |
(C22×D4).255C22 = C24.420C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).255C2^2 | 128,1460 |
(C22×D4).256C22 = C23.630C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).256C2^2 | 128,1462 |
(C22×D4).257C22 = C23.631C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).257C2^2 | 128,1463 |
(C22×D4).258C22 = C23.632C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).258C2^2 | 128,1464 |
(C22×D4).259C22 = C23.633C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).259C2^2 | 128,1465 |
(C22×D4).260C22 = C23.637C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).260C2^2 | 128,1469 |
(C22×D4).261C22 = C23.640C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).261C2^2 | 128,1472 |
(C22×D4).262C22 = C23.641C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).262C2^2 | 128,1473 |
(C22×D4).263C22 = C23.643C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).263C2^2 | 128,1475 |
(C22×D4).264C22 = C24.432C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).264C2^2 | 128,1478 |
(C22×D4).265C22 = C24.434C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).265C2^2 | 128,1480 |
(C22×D4).266C22 = C23.649C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).266C2^2 | 128,1481 |
(C22×D4).267C22 = C24.435C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).267C2^2 | 128,1482 |
(C22×D4).268C22 = C23.651C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).268C2^2 | 128,1483 |
(C22×D4).269C22 = C23.652C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).269C2^2 | 128,1484 |
(C22×D4).270C22 = C24.437C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).270C2^2 | 128,1485 |
(C22×D4).271C22 = C23.656C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).271C2^2 | 128,1488 |
(C22×D4).272C22 = C24.438C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).272C2^2 | 128,1489 |
(C22×D4).273C22 = C23.660C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).273C2^2 | 128,1492 |
(C22×D4).274C22 = C24.440C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).274C2^2 | 128,1493 |
(C22×D4).275C22 = C23.678C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).275C2^2 | 128,1510 |
(C22×D4).276C22 = C23.679C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).276C2^2 | 128,1511 |
(C22×D4).277C22 = C24.448C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).277C2^2 | 128,1512 |
(C22×D4).278C22 = C23.681C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).278C2^2 | 128,1513 |
(C22×D4).279C22 = C23.682C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).279C2^2 | 128,1514 |
(C22×D4).280C22 = C24.450C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).280C2^2 | 128,1516 |
(C22×D4).281C22 = C23.685C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).281C2^2 | 128,1517 |
(C22×D4).282C22 = C23.686C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).282C2^2 | 128,1518 |
(C22×D4).283C22 = C23.695C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).283C2^2 | 128,1527 |
(C22×D4).284C22 = C23.696C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).284C2^2 | 128,1528 |
(C22×D4).285C22 = C23.697C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).285C2^2 | 128,1529 |
(C22×D4).286C22 = C23.700C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).286C2^2 | 128,1532 |
(C22×D4).287C22 = C23.701C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).287C2^2 | 128,1533 |
(C22×D4).288C22 = C23.703C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).288C2^2 | 128,1535 |
(C22×D4).289C22 = C24.456C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).289C2^2 | 128,1536 |
(C22×D4).290C22 = C23.708C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).290C2^2 | 128,1540 |
(C22×D4).291C22 = C24.459C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).291C2^2 | 128,1545 |
(C22×D4).292C22 = C23.714C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).292C2^2 | 128,1546 |
(C22×D4).293C22 = C23.715C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).293C2^2 | 128,1547 |
(C22×D4).294C22 = C23.716C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).294C2^2 | 128,1548 |
(C22×D4).295C22 = C42⋊33D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).295C2^2 | 128,1550 |
(C22×D4).296C22 = C42⋊34D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).296C2^2 | 128,1551 |
(C22×D4).297C22 = C42.199D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).297C2^2 | 128,1552 |
(C22×D4).298C22 = C42⋊35D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).298C2^2 | 128,1555 |
(C22×D4).299C22 = C23.724C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).299C2^2 | 128,1556 |
(C22×D4).300C22 = C23.725C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).300C2^2 | 128,1557 |
(C22×D4).301C22 = C23.726C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).301C2^2 | 128,1558 |
(C22×D4).302C22 = C23.727C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).302C2^2 | 128,1559 |
(C22×D4).303C22 = C23.728C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).303C2^2 | 128,1560 |
(C22×D4).304C22 = C23.729C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).304C2^2 | 128,1561 |
(C22×D4).305C22 = C23.730C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).305C2^2 | 128,1562 |
(C22×D4).306C22 = C23.732C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).306C2^2 | 128,1564 |
(C22×D4).307C22 = C23.737C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).307C2^2 | 128,1569 |
(C22×D4).308C22 = C24.166D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).308C2^2 | 128,1581 |
(C22×D4).309C22 = C42⋊46D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).309C2^2 | 128,1582 |
(C22×D4).310C22 = C42⋊43D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).310C2^2 | 128,1584 |
(C22×D4).311C22 = C23.753C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).311C2^2 | 128,1585 |
(C22×D4).312C22 = C24.598C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).312C2^2 | 128,1586 |
(C22×D4).313C22 = C42⋊47D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).313C2^2 | 128,1588 |
(C22×D4).314C22 = C43⋊12C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).314C2^2 | 128,1590 |
(C22×D4).315C22 = C43⋊13C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).315C2^2 | 128,1592 |
(C22×D4).316C22 = C43⋊14C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).316C2^2 | 128,1593 |
(C22×D4).317C22 = C43⋊15C2 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).317C2^2 | 128,1599 |
(C22×D4).318C22 = C23.C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).318C2^2 | 128,1615 |
(C22×D4).319C22 = M4(2).24C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).319C2^2 | 128,1620 |
(C22×D4).320C22 = 2+ 1+4⋊5C4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).320C2^2 | 128,1629 |
(C22×D4).321C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).321C2^2 | 128,1678 |
(C22×D4).322C22 = C42.277C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).322C2^2 | 128,1680 |
(C22×D4).323C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).323C2^2 | 128,1681 |
(C22×D4).324C22 = C2×Q8⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).324C2^2 | 128,1730 |
(C22×D4).325C22 = C2×D4⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).325C2^2 | 128,1732 |
(C22×D4).326C22 = D4.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).326C2^2 | 128,1741 |
(C22×D4).327C22 = (C2×Q8)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).327C2^2 | 128,1742 |
(C22×D4).328C22 = (C2×D4)⋊21D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).328C2^2 | 128,1744 |
(C22×D4).329C22 = C2×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).329C2^2 | 128,1747 |
(C22×D4).330C22 = C2×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).330C2^2 | 128,1748 |
(C22×D4).331C22 = M4(2)⋊C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).331C2^2 | 128,1751 |
(C22×D4).332C22 = C2×C2≀C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | | (C2^2xD4).332C2^2 | 128,1755 |
(C22×D4).333C22 = C2×C23.7D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).333C2^2 | 128,1756 |
(C22×D4).334C22 = C2×C4⋊D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).334C2^2 | 128,1761 |
(C22×D4).335C22 = C2×D4.2D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).335C2^2 | 128,1763 |
(C22×D4).336C22 = C2×C4⋊SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).336C2^2 | 128,1764 |
(C22×D4).337C22 = C2×Q8.D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).337C2^2 | 128,1766 |
(C22×D4).338C22 = C42.444D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).338C2^2 | 128,1770 |
(C22×D4).339C22 = C42.446D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).339C2^2 | 128,1772 |
(C22×D4).340C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).340C2^2 | 128,1773 |
(C22×D4).341C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).341C2^2 | 128,1774 |
(C22×D4).342C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).342C2^2 | 128,1775 |
(C22×D4).343C22 = C42.18C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).343C2^2 | 128,1777 |
(C22×D4).344C22 = C2×C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).344C2^2 | 128,1779 |
(C22×D4).345C22 = C2×C8⋊7D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).345C2^2 | 128,1780 |
(C22×D4).346C22 = C2×C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).346C2^2 | 128,1783 |
(C22×D4).347C22 = C2×C8⋊2D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).347C2^2 | 128,1784 |
(C22×D4).348C22 = M4(2)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).348C2^2 | 128,1787 |
(C22×D4).349C22 = (C2×C8)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).349C2^2 | 128,1789 |
(C22×D4).350C22 = (C2×C8)⋊12D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).350C2^2 | 128,1790 |
(C22×D4).351C22 = M4(2)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).351C2^2 | 128,1794 |
(C22×D4).352C22 = C2×D4.3D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).352C2^2 | 128,1796 |
(C22×D4).353C22 = C2×D4.4D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).353C2^2 | 128,1797 |
(C22×D4).354C22 = M4(2).37D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).354C2^2 | 128,1800 |
(C22×D4).355C22 = C42.20C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).355C2^2 | 128,1813 |
(C22×D4).356C22 = C2×C22.D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).356C2^2 | 128,1817 |
(C22×D4).357C22 = C2×C23.19D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).357C2^2 | 128,1819 |
(C22×D4).358C22 = C2×C23.46D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).358C2^2 | 128,1821 |
(C22×D4).359C22 = C24.117D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).359C2^2 | 128,1826 |
(C22×D4).360C22 = (C2×D4).301D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).360C2^2 | 128,1828 |
(C22×D4).361C22 = C42.352C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).361C2^2 | 128,1850 |
(C22×D4).362C22 = C42.356C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).362C2^2 | 128,1854 |
(C22×D4).363C22 = C42.357C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).363C2^2 | 128,1855 |
(C22×D4).364C22 = C2×C4.4D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).364C2^2 | 128,1860 |
(C22×D4).365C22 = C2×C42.78C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).365C2^2 | 128,1862 |
(C22×D4).366C22 = C2×C42.28C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).366C2^2 | 128,1864 |
(C22×D4).367C22 = C2×C42.29C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).367C2^2 | 128,1865 |
(C22×D4).368C22 = C42.366C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).368C2^2 | 128,1868 |
(C22×D4).369C22 = C42.240D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).369C2^2 | 128,1870 |
(C22×D4).370C22 = C42.242D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).370C2^2 | 128,1872 |
(C22×D4).371C22 = C2×C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).371C2^2 | 128,1875 |
(C22×D4).372C22 = C2×C8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).372C2^2 | 128,1876 |
(C22×D4).373C22 = C2×C8.12D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).373C2^2 | 128,1878 |
(C22×D4).374C22 = C2×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).374C2^2 | 128,1880 |
(C22×D4).375C22 = C2×C8.2D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).375C2^2 | 128,1881 |
(C22×D4).376C22 = M4(2)⋊7D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).376C2^2 | 128,1883 |
(C22×D4).377C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).377C2^2 | 128,1885 |
(C22×D4).378C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).378C2^2 | 128,1886 |
(C22×D4).379C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).379C2^2 | 128,1887 |
(C22×D4).380C22 = C23⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).380C2^2 | 128,1919 |
(C22×D4).381C22 = C24.121D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).381C2^2 | 128,1920 |
(C22×D4).382C22 = C24.126D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).382C2^2 | 128,1925 |
(C22×D4).383C22 = C24.127D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).383C2^2 | 128,1926 |
(C22×D4).384C22 = C4.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).384C2^2 | 128,1930 |
(C22×D4).385C22 = C4.152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).385C2^2 | 128,1932 |
(C22×D4).386C22 = C42.263D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).386C2^2 | 128,1937 |
(C22×D4).387C22 = C42.266D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).387C2^2 | 128,1940 |
(C22×D4).388C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).388C2^2 | 128,1943 |
(C22×D4).389C22 = C42.271D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).389C2^2 | 128,1945 |
(C22×D4).390C22 = C42.273D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).390C2^2 | 128,1947 |
(C22×D4).391C22 = C42.275D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).391C2^2 | 128,1949 |
(C22×D4).392C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).392C2^2 | 128,1952 |
(C22×D4).393C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).393C2^2 | 128,1954 |
(C22×D4).394C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).394C2^2 | 128,1956 |
(C22×D4).395C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).395C2^2 | 128,1997 |
(C22×D4).396C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).396C2^2 | 128,1998 |
(C22×D4).397C22 = D8⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).397C2^2 | 128,1999 |
(C22×D4).398C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).398C2^2 | 128,2000 |
(C22×D4).399C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).399C2^2 | 128,2004 |
(C22×D4).400C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).400C2^2 | 128,2006 |
(C22×D4).401C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).401C2^2 | 128,2007 |
(C22×D4).402C22 = D8⋊12D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).402C2^2 | 128,2012 |
(C22×D4).403C22 = D4×SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).403C2^2 | 128,2013 |
(C22×D4).404C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).404C2^2 | 128,2014 |
(C22×D4).405C22 = D4⋊4D8 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).405C2^2 | 128,2026 |
(C22×D4).406C22 = D4⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).406C2^2 | 128,2027 |
(C22×D4).407C22 = C42.461C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).407C2^2 | 128,2028 |
(C22×D4).408C22 = C42.462C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).408C2^2 | 128,2029 |
(C22×D4).409C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).409C2^2 | 128,2038 |
(C22×D4).410C22 = C42.45C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).410C2^2 | 128,2042 |
(C22×D4).411C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).411C2^2 | 128,2043 |
(C22×D4).412C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).412C2^2 | 128,2046 |
(C22×D4).413C22 = C42.53C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).413C2^2 | 128,2050 |
(C22×D4).414C22 = C42.54C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).414C2^2 | 128,2051 |
(C22×D4).415C22 = C42.471C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).415C2^2 | 128,2054 |
(C22×D4).416C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).416C2^2 | 128,2055 |
(C22×D4).417C22 = C42.473C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).417C2^2 | 128,2056 |
(C22×D4).418C22 = C42.474C23 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).418C2^2 | 128,2057 |
(C22×D4).419C22 = C2×C22.31C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).419C2^2 | 128,2180 |
(C22×D4).420C22 = C2×C22.34C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).420C2^2 | 128,2184 |
(C22×D4).421C22 = C2×C22.36C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).421C2^2 | 128,2186 |
(C22×D4).422C22 = C2×Q8⋊6D4 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).422C2^2 | 128,2199 |
(C22×D4).423C22 = C2×C22.49C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).423C2^2 | 128,2205 |
(C22×D4).424C22 = C22.80C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).424C2^2 | 128,2223 |
(C22×D4).425C22 = C22.83C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).425C2^2 | 128,2226 |
(C22×D4).426C22 = C22.89C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).426C2^2 | 128,2232 |
(C22×D4).427C22 = C22.97C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).427C2^2 | 128,2240 |
(C22×D4).428C22 = C22.99C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).428C2^2 | 128,2242 |
(C22×D4).429C22 = C22.102C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).429C2^2 | 128,2245 |
(C22×D4).430C22 = C22.103C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).430C2^2 | 128,2246 |
(C22×D4).431C22 = C22.110C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).431C2^2 | 128,2253 |
(C22×D4).432C22 = C2×C24⋊C22 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).432C2^2 | 128,2258 |
(C22×D4).433C22 = C2×C22.56C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).433C2^2 | 128,2259 |
(C22×D4).434C22 = C2×C22.57C24 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 64 | | (C2^2xD4).434C2^2 | 128,2260 |
(C22×D4).435C22 = C22.122C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).435C2^2 | 128,2265 |
(C22×D4).436C22 = C22.124C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).436C2^2 | 128,2267 |
(C22×D4).437C22 = C22.125C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).437C2^2 | 128,2268 |
(C22×D4).438C22 = C22.135C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).438C2^2 | 128,2278 |
(C22×D4).439C22 = C22.140C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).439C2^2 | 128,2283 |
(C22×D4).440C22 = C22.149C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).440C2^2 | 128,2292 |
(C22×D4).441C22 = C22.150C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).441C2^2 | 128,2293 |
(C22×D4).442C22 = C22.151C25 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).442C2^2 | 128,2294 |
(C22×D4).443C22 = C2×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C22×D4 | 32 | | (C2^2xD4).443C2^2 | 128,2314 |
(C22×D4).444C22 = C4×C23⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).444C2^2 | 128,486 |
(C22×D4).445C22 = C4×C4.D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).445C2^2 | 128,487 |
(C22×D4).446C22 = C4×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).446C2^2 | 128,492 |
(C22×D4).447C22 = D4⋊C42 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).447C2^2 | 128,494 |
(C22×D4).448C22 = C25⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 16 | | (C2^2xD4).448C2^2 | 128,513 |
(C22×D4).449C22 = C24.165C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).449C2^2 | 128,514 |
(C22×D4).450C22 = C25.C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 16 | | (C2^2xD4).450C2^2 | 128,515 |
(C22×D4).451C22 = (C23×C4).C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).451C2^2 | 128,517 |
(C22×D4).452C22 = C23.35D8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).452C2^2 | 128,518 |
(C22×D4).453C22 = C24.65D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).453C2^2 | 128,520 |
(C22×D4).454C22 = C24.167C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).454C2^2 | 128,531 |
(C22×D4).455C22 = C42.96D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).455C2^2 | 128,532 |
(C22×D4).456C22 = C42.98D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).456C2^2 | 128,534 |
(C22×D4).457C22 = C42.100D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).457C2^2 | 128,536 |
(C22×D4).458C22 = C2.(C4×D8) | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).458C2^2 | 128,594 |
(C22×D4).459C22 = D4⋊(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).459C2^2 | 128,596 |
(C22×D4).460C22 = (C2×SD16)⋊14C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).460C2^2 | 128,609 |
(C22×D4).461C22 = (C2×C4)⋊9D8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).461C2^2 | 128,611 |
(C22×D4).462C22 = C2×C23.23D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).462C2^2 | 128,1019 |
(C22×D4).463C22 = C42⋊42D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).463C2^2 | 128,1022 |
(C22×D4).464C22 = C2×C24.3C22 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).464C2^2 | 128,1024 |
(C22×D4).465C22 = C43⋊9C2 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).465C2^2 | 128,1025 |
(C22×D4).466C22 = C23.179C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).466C2^2 | 128,1029 |
(C22×D4).467C22 = C4×C22≀C2 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).467C2^2 | 128,1031 |
(C22×D4).468C22 = C4×C4⋊D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).468C2^2 | 128,1032 |
(C22×D4).469C22 = C4×C22.D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).469C2^2 | 128,1033 |
(C22×D4).470C22 = C4×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).470C2^2 | 128,1035 |
(C22×D4).471C22 = C4×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).471C2^2 | 128,1038 |
(C22×D4).472C22 = C24.90D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).472C2^2 | 128,1040 |
(C22×D4).473C22 = C23.191C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).473C2^2 | 128,1041 |
(C22×D4).474C22 = C24.542C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).474C2^2 | 128,1043 |
(C22×D4).475C22 = C24.547C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).475C2^2 | 128,1050 |
(C22×D4).476C22 = C23.201C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).476C2^2 | 128,1051 |
(C22×D4).477C22 = C24.195C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).477C2^2 | 128,1054 |
(C22×D4).478C22 = C24.198C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).478C2^2 | 128,1057 |
(C22×D4).479C22 = C42.160D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).479C2^2 | 128,1058 |
(C22×D4).480C22 = C23.223C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).480C2^2 | 128,1073 |
(C22×D4).481C22 = C23.234C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).481C2^2 | 128,1084 |
(C22×D4).482C22 = C23.235C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).482C2^2 | 128,1085 |
(C22×D4).483C22 = C23.236C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).483C2^2 | 128,1086 |
(C22×D4).484C22 = C24.212C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).484C2^2 | 128,1089 |
(C22×D4).485C22 = C23.240C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).485C2^2 | 128,1090 |
(C22×D4).486C22 = C23.241C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).486C2^2 | 128,1091 |
(C22×D4).487C22 = C24.215C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).487C2^2 | 128,1093 |
(C22×D4).488C22 = C24.217C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).488C2^2 | 128,1095 |
(C22×D4).489C22 = C24.218C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).489C2^2 | 128,1096 |
(C22×D4).490C22 = C24.219C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).490C2^2 | 128,1098 |
(C22×D4).491C22 = C24.220C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).491C2^2 | 128,1099 |
(C22×D4).492C22 = C2×C23.10D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).492C2^2 | 128,1118 |
(C22×D4).493C22 = C23.288C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).493C2^2 | 128,1120 |
(C22×D4).494C22 = C42⋊15D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).494C2^2 | 128,1124 |
(C22×D4).495C22 = C23.295C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).495C2^2 | 128,1127 |
(C22×D4).496C22 = C42⋊16D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).496C2^2 | 128,1129 |
(C22×D4).497C22 = C42.163D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).497C2^2 | 128,1130 |
(C22×D4).498C22 = C24.94D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).498C2^2 | 128,1137 |
(C22×D4).499C22 = C24.243C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).499C2^2 | 128,1138 |
(C22×D4).500C22 = C24.244C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).500C2^2 | 128,1139 |
(C22×D4).501C22 = C23.309C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).501C2^2 | 128,1141 |
(C22×D4).502C22 = C24.249C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).502C2^2 | 128,1146 |
(C22×D4).503C22 = C23.315C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).503C2^2 | 128,1147 |
(C22×D4).504C22 = C24.252C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).504C2^2 | 128,1149 |
(C22×D4).505C22 = C24.563C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).505C2^2 | 128,1151 |
(C22×D4).506C22 = C24.258C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).506C2^2 | 128,1157 |
(C22×D4).507C22 = C24.264C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).507C2^2 | 128,1164 |
(C22×D4).508C22 = C23.335C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).508C2^2 | 128,1167 |
(C22×D4).509C22 = C24.271C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).509C2^2 | 128,1179 |
(C22×D4).510C22 = C23.349C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).510C2^2 | 128,1181 |
(C22×D4).511C22 = C23.350C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).511C2^2 | 128,1182 |
(C22×D4).512C22 = C23.352C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).512C2^2 | 128,1184 |
(C22×D4).513C22 = C23.354C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).513C2^2 | 128,1186 |
(C22×D4).514C22 = C24.276C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).514C2^2 | 128,1187 |
(C22×D4).515C22 = C23.356C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).515C2^2 | 128,1188 |
(C22×D4).516C22 = C24.278C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).516C2^2 | 128,1189 |
(C22×D4).517C22 = C23.359C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).517C2^2 | 128,1191 |
(C22×D4).518C22 = C23.360C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).518C2^2 | 128,1192 |
(C22×D4).519C22 = C24.283C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).519C2^2 | 128,1195 |
(C22×D4).520C22 = C24.286C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).520C2^2 | 128,1198 |
(C22×D4).521C22 = C23.367C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).521C2^2 | 128,1199 |
(C22×D4).522C22 = C23.368C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).522C2^2 | 128,1200 |
(C22×D4).523C22 = C23.385C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).523C2^2 | 128,1217 |
(C22×D4).524C22 = C24.299C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).524C2^2 | 128,1218 |
(C22×D4).525C22 = C24.300C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).525C2^2 | 128,1219 |
(C22×D4).526C22 = C42⋊17D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).526C2^2 | 128,1267 |
(C22×D4).527C22 = C42.165D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).527C2^2 | 128,1268 |
(C22×D4).528C22 = C42.166D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).528C2^2 | 128,1270 |
(C22×D4).529C22 = C42.167D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).529C2^2 | 128,1274 |
(C22×D4).530C22 = C42.170D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).530C2^2 | 128,1279 |
(C22×D4).531C22 = C42.172D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).531C2^2 | 128,1294 |
(C22×D4).532C22 = C42.173D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).532C2^2 | 128,1295 |
(C22×D4).533C22 = C24.583C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).533C2^2 | 128,1296 |
(C22×D4).534C22 = C42.175D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).534C2^2 | 128,1298 |
(C22×D4).535C22 = C23.479C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).535C2^2 | 128,1311 |
(C22×D4).536C22 = C42.178D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).536C2^2 | 128,1312 |
(C22×D4).537C22 = C23.500C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).537C2^2 | 128,1332 |
(C22×D4).538C22 = C23.502C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).538C2^2 | 128,1334 |
(C22×D4).539C22 = C24.361C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).539C2^2 | 128,1348 |
(C22×D4).540C22 = C23.530C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).540C2^2 | 128,1362 |
(C22×D4).541C22 = C42⋊29D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).541C2^2 | 128,1363 |
(C22×D4).542C22 = C42.190D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).542C2^2 | 128,1365 |
(C22×D4).543C22 = C23.535C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).543C2^2 | 128,1367 |
(C22×D4).544C22 = C42⋊30D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).544C2^2 | 128,1368 |
(C22×D4).545C22 = C24.374C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).545C2^2 | 128,1370 |
(C22×D4).546C22 = C22×C23⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).546C2^2 | 128,1613 |
(C22×D4).547C22 = C2×C23.C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).547C2^2 | 128,1614 |
(C22×D4).548C22 = C22×C4.D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).548C2^2 | 128,1617 |
(C22×D4).549C22 = C2×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).549C2^2 | 128,1619 |
(C22×D4).550C22 = C22×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).550C2^2 | 128,1622 |
(C22×D4).551C22 = C2×C23.24D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).551C2^2 | 128,1624 |
(C22×D4).552C22 = C2×C23.37D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).552C2^2 | 128,1625 |
(C22×D4).553C22 = C2×C23.36D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).553C2^2 | 128,1627 |
(C22×D4).554C22 = C24.98D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).554C2^2 | 128,1628 |
(C22×D4).555C22 = C2×C4×D8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).555C2^2 | 128,1668 |
(C22×D4).556C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).556C2^2 | 128,1669 |
(C22×D4).557C22 = C2×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).557C2^2 | 128,1672 |
(C22×D4).558C22 = C2×D8⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).558C2^2 | 128,1674 |
(C22×D4).559C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).559C2^2 | 128,1676 |
(C22×D4).560C22 = C2×C22⋊SD16 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).560C2^2 | 128,1729 |
(C22×D4).561C22 = C2×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).561C2^2 | 128,1733 |
(C22×D4).562C22 = C24.103D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).562C2^2 | 128,1734 |
(C22×D4).563C22 = C24.177D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 16 | | (C2^2xD4).563C2^2 | 128,1735 |
(C22×D4).564C22 = C24.104D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).564C2^2 | 128,1737 |
(C22×D4).565C22 = C24.106D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).565C2^2 | 128,1739 |
(C22×D4).566C22 = C2×D4.D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).566C2^2 | 128,1762 |
(C22×D4).567C22 = C42.211D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).567C2^2 | 128,1768 |
(C22×D4).568C22 = C2×D4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).568C2^2 | 128,1802 |
(C22×D4).569C22 = C2×D4⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).569C2^2 | 128,1803 |
(C22×D4).570C22 = C2×D4.Q8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).570C2^2 | 128,1804 |
(C22×D4).571C22 = C42.219D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).571C2^2 | 128,1809 |
(C22×D4).572C22 = C42.221D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).572C2^2 | 128,1832 |
(C22×D4).573C22 = C42.222D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).573C2^2 | 128,1833 |
(C22×D4).574C22 = C42.225D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).574C2^2 | 128,1837 |
(C22×D4).575C22 = C42.227D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).575C2^2 | 128,1841 |
(C22×D4).576C22 = C42.228D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).576C2^2 | 128,1842 |
(C22×D4).577C22 = C42.232D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).577C2^2 | 128,1846 |
(C22×D4).578C22 = C2×C22.11C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).578C2^2 | 128,2157 |
(C22×D4).579C22 = C22.14C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).579C2^2 | 128,2160 |
(C22×D4).580C22 = C4×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).580C2^2 | 128,2161 |
(C22×D4).581C22 = C22×C22.D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).581C2^2 | 128,2166 |
(C22×D4).582C22 = C22×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).582C2^2 | 128,2168 |
(C22×D4).583C22 = C2×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).583C2^2 | 128,2171 |
(C22×D4).584C22 = C2×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).584C2^2 | 128,2174 |
(C22×D4).585C22 = C2×C23.38C23 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).585C2^2 | 128,2179 |
(C22×D4).586C22 = C2×C22.33C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).586C2^2 | 128,2183 |
(C22×D4).587C22 = C22.48C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).587C2^2 | 128,2191 |
(C22×D4).588C22 = C22.49C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).588C2^2 | 128,2192 |
(C22×D4).589C22 = C2×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).589C2^2 | 128,2197 |
(C22×D4).590C22 = C2×C22.45C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).590C2^2 | 128,2201 |
(C22×D4).591C22 = C2×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).591C2^2 | 128,2202 |
(C22×D4).592C22 = C2×C22.47C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).592C2^2 | 128,2203 |
(C22×D4).593C22 = C2×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).593C2^2 | 128,2206 |
(C22×D4).594C22 = C22.64C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).594C2^2 | 128,2207 |
(C22×D4).595C22 = C2×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).595C2^2 | 128,2211 |
(C22×D4).596C22 = C22.70C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).596C2^2 | 128,2213 |
(C22×D4).597C22 = C22.76C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).597C2^2 | 128,2219 |
(C22×D4).598C22 = C22.78C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).598C2^2 | 128,2221 |
(C22×D4).599C22 = C22.90C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).599C2^2 | 128,2233 |
(C22×D4).600C22 = C22.95C25 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).600C2^2 | 128,2238 |
(C22×D4).601C22 = C23.144C24 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).601C2^2 | 128,2252 |
(C22×D4).602C22 = C23×SD16 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).602C2^2 | 128,2307 |
(C22×D4).603C22 = C22×C4○D8 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).603C2^2 | 128,2309 |
(C22×D4).604C22 = C22×C8.C22 | φ: C22/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).604C2^2 | 128,2311 |
(C22×D4).605C22 = D4×C42 | φ: trivial image | 64 | | (C2^2xD4).605C2^2 | 128,1003 |
(C22×D4).606C22 = D4⋊4C42 | φ: trivial image | 64 | | (C2^2xD4).606C2^2 | 128,1007 |
(C22×D4).607C22 = D4×C22⋊C4 | φ: trivial image | 32 | | (C2^2xD4).607C2^2 | 128,1070 |
(C22×D4).608C22 = C24.549C23 | φ: trivial image | 64 | | (C2^2xD4).608C2^2 | 128,1071 |
(C22×D4).609C22 = D4×C4⋊C4 | φ: trivial image | 64 | | (C2^2xD4).609C2^2 | 128,1080 |
(C22×D4).610C22 = C23.231C24 | φ: trivial image | 64 | | (C2^2xD4).610C2^2 | 128,1081 |
(C22×D4).611C22 = D4×C22×C4 | φ: trivial image | 64 | | (C2^2xD4).611C2^2 | 128,2154 |
(C22×D4).612C22 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2^2xD4).612C2^2 | 128,2156 |
(C22×D4).613C22 = C2×C23.33C23 | φ: trivial image | 64 | | (C2^2xD4).613C2^2 | 128,2159 |
(C22×D4).614C22 = C2×D4⋊6D4 | φ: trivial image | 64 | | (C2^2xD4).614C2^2 | 128,2196 |
(C22×D4).615C22 = C2×D4×Q8 | φ: trivial image | 64 | | (C2^2xD4).615C2^2 | 128,2198 |
(C22×D4).616C22 = C2×D4⋊3Q8 | φ: trivial image | 64 | | (C2^2xD4).616C2^2 | 128,2204 |
(C22×D4).617C22 = C22×2- 1+4 | φ: trivial image | 64 | | (C2^2xD4).617C2^2 | 128,2324 |